The Facts of the Jellyfish's sting and the treatment

How do we treat a jellyfish sting? This is a full explanation about it.

Cari Tahu Kecerdasan Apa Yang Anda Kuasai

Pada dasarnya, manusia memiliki 9 kecerdasan utama sesuai dengan pembagian kecerdasan pada otak kita. Hanya saja kemampuan yang sangat dominan pada setiap orang berbeda. Cari tau disini kecerdasan apa yang lebih dominan pada diri anda.

4 Trend Masa Depan Berkaitan dengan Teknologi Ramah Lingkungan

Menyelamatkan planet ini dan mengurangi emisi adalah hal yang baik, tapi siapa yang mengatakan bahwa Anda tidak bisa bersenang-senang sedikit ketika melakukan hal itu?

Mempercantik Tampilan Rumah dengan 'Vertical Garden'

Pada masa sekarang, Vertical garden masih belum familiar di kalangan masyarakat Indonesia. Jauh sebelum dikenal di Indonesia, masyarakat dari negara-negara yang memiliki lahan terbatas sudah memanfaatkan solusi ini.

Nokia X2-02, Musik Murah Dengan Easy Swap

Nokia sebagai raja ponsel dunia kembali luncurkan ponsel musik murah meriah. Kali ini dalam balutan Nokia X2-02, dedengkot asal asal Finlandia ini mengusung konsep dual SIM dengan easy swap.

Selasa, 24 April 2012

Crunching the Big Bang With the Greatest Supercomputer Ever Built

Listening to the Skies Part of South Africa's Karoo Array Telescope, or MeerKAT, a project designed to demonstrate the country's capability to host the Square Kilometer Array. The SKA will be the largest telescope ever conceived, and will require untold amounts of computing power — the project will only be possible as exascale computing becomes a reality. SKA Africa/Nadeem Oozeer

Popsci.com - A little more than a decade from now, one of the world’s great arid plains will become a bustling intersection of high-resolution astronomy and high-powered computing. Scrub land in either South Africa or Australia will host the biggest telescope ever, the Square Kilometer Array (SKA), designed to listen to the oldest birth pangs of the universe. And the brains of the operation will likely be the world’s most powerful supercomputer.
The next generation of major scientific instruments will require a whole new information architecture, both for processing and data transfer and for storage. So the future of astronomy is closely tied to the future of computing. To interlace these futures even more tightly, IBM today announced a new $43 million (€32 million) center connected to its research base in Zurich, where computer scientists hope to design and build the first low-power exascale computer systems.
The Square Kilometer Array will consist of thousands of radio antennas spread across an area the size of a continent, with a collecting area equivalent to one square kilometer. It will study dark energy, search for black holes, look for complex organic molecules in interstellar space, and look back to the cosmic Dark Ages — the time before the formation of the first stars. Along with a massive virtual field of view, all this work requires lots of computing power.
Take the current global daily Internet traffic and multiply it by two, and you start to approach the stupendous scales of data the Square Kilometre Array will churn out daily — about an exabyte per day. This vastly outpaces the state of the art in computing, notes Ton Engbersen of IBM Research in Zurich. “The area you would need for PCs is larger than the SKA,” he said.
Depending on how the SKA is designed and how data transfer questions are solved, it will require between two and 30 exaflops, he said. The design parameters are still being hammered out, but the first phases of construction are scheduled to start in 2016. The site in either Australia or Africa (with most of the dishes in South Africa, and others scattered in different countries from Botswana to Zambia) is expected to be announced later this month. The $2 billion project is not planned to be completed until 2024.


Australian SKA Concept: Artist's impression of dishes that would make up the SKA radio telescope if it is built in Australia.  Swinburne Astronomy Productions/SKA Program Development Office

Data from something as enormous as SKA is a challenge on several levels, and aside from industry efforts, researchers like Andreas Wicenec are trying to figure it out in pieces. Wicenec is head of computing at the International Centre for Radio Astronomy Research in the state of Western Australia and part of his job is figuring out how to store all of the SKA’s data. It’s equivalent to 15 million iPods a day, he noted.

“You have to plan for the whole thing in one go. What is currently called exascale computing is not just an exaflop computer; that is the storage flow, too,” he said. “They have to be built up in parallel.”
He is researching how to increase bandwidth among GPUs to transfer data more quickly, and how to keep these monstrous computers cool to lower power needs. This will be especially important in the deserts of South Africa or Western Australia.

“We have to decrease power consumption by a factor of 10 to 100 to be able to pay the power bill for such a machine,” he said.
IBM researchers have some ideas, according to Engbersen. The company wants to build on its prior research using phase-change memory, which you can read more about here, and its work on 3-D chip architectures, which can transfer data more efficiently and keep things cool. He envisions a stack of 100 chips, nestled one on top of each other — with such an architecture, the SKA could theoretically have supercomputers the size of sugar cubes.

Data downloads can be made more efficient, too — Engbersen notes that when you open a document, you normally look at the first few pages before you scroll down all the way. This can work for astronomers too, perhaps, downloading a few “pages” or bits of data at a time.
IBM’s research center will be located in the Netherlands, in collaboration with ASTRON, which is planning the SKA, and the Netherlands Institute for Radio Astronomy.
New system designs stemming from the SKA effort could translate to other Big Data fields, Engbersen said. But the real payoff will be huge for astronomy.
With SKA, astronomers will have a constant, real-time all-sky radio survey, which could help uncover some of the strangest phenomena in the cosmos. Current radio astronomy is powerful, but a full-sky survey is still limited to about 10 arc seconds. That’s a tiny slice of sky — for comparison, this month the planet Venus, at its super-bright huge disc, is between 25 and 37 arc seconds in diameter. Optical sky surveys, which started in the early 20th century with photographic plates, are fairly high-resolution, more like 1 arc second. “If you want a similar resolution with radio telescopes, you have to go to the SKA scale,” Wicenec said.
The SKA’s lengthy construction timeframe will help the telescopes, computers and storage facilities grow together, Wicenec said.
“It is really relying on the fact that technology is improving at a certain rate,” he said.

South Africa Karoo Array Telescope: South Africa is currently building the Karoo Array Telescope, also known as MeerKAT, a mid-frequency demonstrator radio telescope, alongside the proposed SKA core site. The first seven dishes of the local precursor instrument, known as KAT-7, were completed in December 2010.  SKA Africa/Nadeem Oozeer

Senin, 23 April 2012

Where Is The Center of the Universe?


Popsci.com - First, it’s important to know that the big bang wasn’t an explosion of matter into empty space—it was the rapid expansion of space itself. This means that every single point in the universe appears to be at the center. Think of the universe as an empty balloon with dots on it. Those dots represent clusters of galaxies. As the balloon inflates, every dot moves farther away from every other dot. The space between clusters of galaxies expands, like the rest of the universe, at an accelerating rate. (Gravity keeps the clusters themselves the same size.)

Edwin Hubble first observed this phenomenon in 1929, when he noticed that the light from distant galaxies shifted to the red end of the spectrum, as though it had been stretched as it traveled through space. By measuring the wavelengths of the light, Hubble observed that galaxies were expanding away from each other at a rate proportional to their distance from one another.

In the beginning, the universe was a single point. Where was that? It was, and still is, everywhere. Scientists even have proof: Light from the big bang, in the form of cosmic radiation, fills the sky in every direction

Rabu, 18 April 2012

Bima Sakti Tampaknya Kosong Dari Materi Gelap



Studi yang paling akurat sejauh ini mengetahui bahwa gerakan bintang-bintang di Bima Sakti tidak menemukan bukti untuk materi gelap dalam volume besar di sekitar Matahari. Menurut teori yang diterima secara luas, lingkungan tata surya diperkirakan diisi oleh materi gelap yaitu suatu zat yang misterius, dikatakan misterius karena zat ini tak terlihat dan hanya dapat dideteksi secara tidak langsung menggunakan gaya gravitasi.

Sebuah studi baru yang dibawa oleh tim astronom di Chile telah menemukan bahwa teori yang telah diterima secara luas itu tidak sesuai dengan hasil fakta-fakta pengamatan. Ini mungkin berarti bahwa usaha yang selama ini di lakukan untuk langsung mendeteksi partikel materi gelap di bumi tidak mungkin berhasil.

Segolongan tim astronom menggunakan teleskop MPG / ESO 2,2 meter di LA Silla Observatory bersama dengan teleskop observasi lainnya telah menemukan dan berhasil memetakan gerakan lebih dari 400 bintang sampai sejauh 13.000 tahun cahaya dari Matahari. Dari data ini mereka telah menghitung massa materi-materi di sekitar Matahari dalam volume empat kali lebih besar dari yang sebelumnya diperhitungkan.

Kata ketua tim Kristen Moni Bidin (Departamento de Astronomía, Universidad de Concepción, Chili) "Jumlah massa yang kita peroleh sangat cocok dengan apa yang kita lihat - bintang, debu dan gas -  di wilayah sekitar Matahari. Penilitian ini tidak meninggalkan observasi tentang materi gelap tetapi malah tertuju kesana yaitu kita tau sekarang bahwa menurut pengukuran kami di sekitar Matahari tidak terdapat materi gelap."

Materi gelap adalah zat misterius yang tidak dapat terlihat tetapi zat itu menunjukkan dirinya dengan daya tarik gravitasinya terhadap material yang ada di sekitarnya. Komposisi ekstra dalam kosmos pada awalnya dapat digunakan untuk menjelaskan mengapa bagian luar dari galaksi termasuk galaksi Bima Sakti kita diputar begitu cepat tetapi materi gelap sekarang juga menjadi komponen penting mengenai teori bagaimana terbentuknya galaksi dan bagaimana galaksi dapat berevolusi.

Menurut teori saat ini, materi gelap diperkirakan merupakan 83% dari isi alam semesta dengan 17% sisanya adalah bentuk materi normal. Sebuah jumlah yang jauh lebih besar dari energi gelap tampaknya juga hadir di alam semesta namun tidak diharapkan mempengaruhi gerakan bintang-bintang di dalam Bima Sakti. Semua upaya sejauh ini untuk mendeteksi materi gelap laboratorium di Bumi telah gagal.

Dengan sangat berhati-hati dalam mengukur gerakan banyak bintang, terutama yang jauh dari Bima Sakti, tim dapat bekerja mundur untuk menyimpulkan berapa banyak masalah yang hadir. Gerakan adalah hasil dari daya tarik gravitasi yang timbal balik dari semua materi, apakah materi itu normal seperti bintang, atau materi gelap.

Para astronom yang ada masih bingung mengenai bagaimana galaksi terbentuk dan berputar serta bahwa Bima Sakti dikelilingi oleh lingkaran materi gelap. Mereka tidak mampu secara tepat memprediksi bagaimana bentuk HALO (Bentuk cincin yang melingkari Bima sakti) ini. Walaupun penelitian ini memakan waktu yang sangat lama tetapi mereka berharap dapat menemukan jumlah yang signifikan di wilayah sekitar Matahari. Hanya bentuk yang sangat sulit dan tidak mungkin untuk menjelaskan HALO dari materi gelap.

Hasil baru juga berarti bahwa upaya untuk mendeteksi materi gelap di Bumi dengan mencoba untuk menemukan interaksi langka antara partikel materi gelap dan "normal" materi adalah tidak mungkin berhasil.

"Meskipun hasilnya baru, materi yang terlihat sendiri saja sudah dapat menunjukkan bahwa Bima Sakti berputar jauh lebih cepat. Jadi, jika materi gelap tidak terdapat di daerah yang seperti kita harapkan, solusi baru untuk masalah hilangnya massa di luar angkasa harus ditemukan. Hasil kami bertentangan dengan teori saat ini yang  diterima. Misteri materi gelap baru saja menjadi lebih misterius. Survei masa mendatang, seperti misi Gaia ESA, akan sangat penting untuk bergerak melampaui titik ini ". Kristen Moni Bidin menyimpulkan.

Minggu, 15 April 2012

'Worm Hole' Mesin Waktu Yang Akan Segera Ditemukan

Ada banyak film maupun novel fiksi yang mengangkat cerita tentang manusia yang mampu menjelajahi waktu ke masa depan maupun ke masa lalu dengan imajinasi para sutradara dan aminasi film yang sangat memukau tapi apakah benar pada kenyataannya manusia dapat pergi menjelajahi waktu?


Para fisikawan tidak mau ketinggalan menganalisa aspek ilmiah dari teknologi-teknologi yang ditampilkan dalam film film yang bertemakan mesin waktu tersebut.
Dulu para fisikawan yang berani mengangkat topik time travel dianggap terlalu asyik berkhayal. Tetapi
sekarang justru para fisikawan kebingungan mencari bukti-bukti yang bisa menunjukkan secara pasti bahwa perjalanan menembus waktu ini tidak mungkin bisa dilakukan!

Ternyata konsep-konsep fisika yang ada justru mendukung teori time travelling ini! Siapa sangka bahwa sebenarnya kita pun sudah sering melakukan perjalanan menembus waktu dalam kehidupan sehari-hari kita! Dan sebenarnya tanpa menggunakan mesin waktu!
Penemuan fenomenal ini ditemukan oleh seorang fisikawan ternama, Albert Einstein, dengan teori relativitasnya.

Menurut Einstein, semakin besar kecepatan gerak suatu benda atau partikel, waktu akan berjalan semakin lambat bagi benda atau partikel tersebut. Saat kecepatannya mendekati kecepatan cahaya, 
Waktu akan berjalan begitu lambatnya sehingga benda yang bergerak dengan kecepatan setinggi itu bisa kembali ke posisi awal dengan sangat cepat.
 
Teori relativitas Einstein dapat dibuktikan dengan perjalanan ke ruang angkasa. Para astronot meninggalkan bumi menggunakan pesawat ulang-alik yang meluncur dengan kecepatan sangat tinggi. Jika mereka melakukan perjalanan selama 1 tahun di ruang angkasa dan kemudian kembali ke bumi, mereka bisa menemukan bahwa bumi mencatat waktu perjalanan mereka mencapai 10 tahun!

Ini berarti dua orang atau benda yang bergerak dengan kecepatan berbeda akan mengalami durasi waktu yang berbeda pula. Ini juga berarti bahwa para astronot itu sudah berada di masa depan mereka karena orang-orang yang ditinggalkannya kini menjadi 10 tahun lebih tua dari saat mereka pergi meninggalkan bumi (padahal mereka hanya pergi selama 1 tahun)!


Dalam kehidupan sehari-hari kita juga sering mengalami hal ini saat kita bepergian menggunakan pesawat terbang.

Kecepatan gerak pesawat memungkinkan kita untuk ‘lompat’ ke masa depan kita, walaupun lompatannya tidak jauh (hanya beberapa nanodetik) sehingga kita biasanya tidak menyadarinya. Jam atom yang sangat akurat dapat membuktikan bahwa kita sudah lompat beberapa nanodetik (1 nanodetik = 10-9 detik) ke masa depan! Efek yang kita rasakan adalah fenomena yang kita sebut Jet Lag.

Jika kecepatan bisa membuat kita lompat ke masa depan, bagaimana caranya kita bisa lompat ke masa lalu?
Albert Einstein lagi-lagi menjawab pertanyaan ini dengan teori relativitasnya. Fisikawan ini menyatakan bahwa gaya tarik gravitasi dapat memperlambat waktu!. Menurut Einstein, jam dinding yang dipasang di ruang bawah tanah (lebih dekat ke pusat bumi sehingga mengalami gaya tarik gravitasi yang lebih besar) berjalan lebih lambat dibanding jam dinding yang dipasang di tingkat tertinggi suatu gedung. Tentu saja perbedaannya sangat kecil dan hanya bisa dideteksi oleh jam atom.

Jadi, yang mempengaruhi waktu bukan hanya kecepatan, tetapi juga gravitasi. Ini berarti kita bisa kembali ke masa lalu kita dengan memanfaatkan medan gravitasi yang sangat kuat.

Black hole atau lubang hitam merupakan medan yang memiliki gravitasi paling kuat. Lubang hitam ini bisa menarik benda apa saja ke dalamnya.  Tidak ada yang bisa menghindari tarikan gravitasinya, termasuk cahaya. Cahaya atau partikel lain yang tertarik oleh lubang hitam akan langsung masuk ke dalamnya dan entah apa yang terjadi dengan benda yang masuk kedalamnya, dan semua yang tadinya ada menjadi tidak ada.

Banyak ilmuwan yang memperkirakan lubang hitam bisa menjadi pintu untuk kembali ke masa lalu karena gravitasinya yang begitu kuat. Tetapi semua partikel akan hancur jika masuk ke lubang hitam! Bagaimana bisa kembali ke masa lalu jika kita sudah hancur?

Para fisikawan akhirnya beralih meneliti Wormhole (Lubang Cacing). Wormhole juga merupakan medan yang memiliki gravitasi yang sangat kuat, tetapi tidak seperti lubang hitam. Jika suatu benda atau partikel masuk ke salah satu ujung lubang cacing, partikel itu masih bisa keluar di ujung lainnya. Jalur yang harus ditempuh dalam wormhole jauh lebih pendek dibanding jalur konvensional (merupakan sebuah jalan pintas). Ini seperti melewati terowongan di bawah bukit.


Perjalanan melalui bukit tentunya lebih jauh dibanding jarak yang harus ditempuh jika kita melewati terowongan yang terletak di bawah bukit tersebut.
Pembentukan wormhole didukung lagi oleh teori relativitas Einstein.
Menurut Einstein, massa dapat menyebabkan waktu ruang (spacetime) menjadi melengkung (curved)



Misalnya ada wormhole yang pintu masuknya tidak jauh dari atmosfer Bumi, tetapi pintu keluarnya berada di dekat bintang yang dipenuhi partikel netron (neutron star) yang memiliki gravitasi sangat tinggi. Kita tahu bahwa pada ketinggian di atas atmosfer bumi gaya gravitasi bumi semakin kecil karena menjauhi pusat bumi. Ini berarti di pintu masuk wormhole waktu berjalan cepat, tetapi di pintu keluarnya waktu berjalan sangat lambat (karena adanya gravitasi
bintang). 

Dengan demikian, jika kita memasuki wormhole tersebut kita bisa melakukan perjalanan dalam lorong waktu menuju masa lalu maupun masa depan! Satu hal yang pasti adalah pembuatan wormhole memang tidak mudah, tetapi menurut Fisika hal ini tidak mustahil.

Inspired by : www.kompasiana.com

Jumat, 13 April 2012

The Facts of the Jellyfish's sting and the treatment

This is the fourth post based upon my presentation given at the Wilderness Medical Society Annual Meeting held in Snowmass, Colorado from July 24-29, 2009. The presentation was entitled “Just When You Thought It Was Safe to Go Back in the Water.”” The topic was an overview of hazardous marine animals and it was delivered by me. In the previous posts, there was information about sharks, stingrays and scorpionfishes, and sea urchins. In this post, there is information about injuries from jellyfishes incurred in the marine environment.


Jellyfishes are stinging creatures with stinging “cells,” which are highly specialized and designed to inoculate prey with venom. There may be millions of these stinging cells on the tentacles or near the mouth of the animal. When the cells are stimulated, they shoot out a stinging thread that releases microscopic granules of venom into the victim.

The victim may suffer immediate burning pain, skin rash, blistering, allergic reaction, or a number of systemic symptoms, including neurological sydromes, low blood pressure, abnormal heart rhythms, difficulty breathing, abdominal pain, nausea and vomiting, diarrhea, muscle cramping, and many others.

Treatment should be swift in order to minimize the clinical syndrome.
  1. Rinse the wound with seawater or concentrated salt solution if possible. A gentle fresh water rinse may cause more stinging cells to discharge their venom. 
  2. There is growing support for hot water immersion therapy (113 degrees Fahrenheit or 45 degrees Centigrade), similar to that for a stingray or scorpionfish envenomation, for treatment of certain jellyfish stings. This recommendation emanates from experts in Australia. It is not known if this therapy is effective against North American, European, and non-Australian (Indo-Pacific) jellyfish species.
  3. Anticipate an allergic reaction and be prepared to treat with injectable epinephrine and/or oral antihistamines.
  4. Do not rub the wound.
  5. Wear protective gloves (double thickness of a surgical glove or a thick dishwashing glove preferred).
  6. If the sting is from the box jellyfish Chironex fleckeri, flood the area with topical acetic acid 5% (vinegar) immediately and with a continuous application for a minimum of 30 minutes.
  7. Remove large tentacle fragments with forceps.
  8. DO NOT apply the pressure immobilization technique.
  9. Other topical decontaminants that may work, depending on the jellyfish species, include isopropyl (rubbing) alcohol, dilute ammonium hydroxide (household ammonia), powdered bicarbonate (baking soda), unseasoned meat tenderizer (papain), papaya fruit or juice, or lime or lemon (citrus) juice.
  10. After decontamination, remove adherent nematocysts by applying shaving cream or a paste of baking soda and shaving with a sharp edge, such as a safety razor.
  11. For a mild skin reaction, apply a topical corticosteroid (“steroid”) cream, ointment or lotion.
  12. If the reaction is moderate to severe, a physician may prescribe a systemic steroid or administer a steroid injection.
  13. Anti-tetanus immunization is standard.
  14. Observe closely for development of a wound infection.
  15. If the sting is from the box jellyfish Chironex fleckeri, there is an antivenom available in certain locales. The true efficacy of this therapy is currently under scrutin.

Diberdayakan oleh Blogger.